skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bahuaud, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The principle of convergence stability for geometric flows is the combination of the continuous dependence of the flow on initial conditions, with the stability of fixed points. It implies that if the flow from an initial state g0 exists for all time and converges to a stable fixed point, then the flows of solutions that start near g0 also converge to fixed points. We show this in the case of the Ricci flow, carefully proving the continuous dependence on initial conditions. Symmetry assumptions on initial geometries are often made to simplify geometric flow equations. As an application of our results, we extend known convergence results to open sets of these initial data, which contain geometries with no symmetries. 
    more » « less